Category Archives: USB devices

USB-3/C Header Cable Mystery

OK then. I’ve got the parts for my second hardware refresh. I now understand I may have been rooked. The Asrock B550 Extreme4 mobo comes with a perfectly serviceable 19-pin USB 3.1/3.2 header block on the motherboard, but no cable to match. And upon looking around, I find precious few such cables available at any price. To me, this poses something of a USB-3/C header cable mystery. It’s a mystery I’d like to solve before I start building.

Solving USB-3/C Header Cable Mystery

The situation raises an interesting question: should such cables come with the mobo or the case? In my case (pun intended) I’m recycling something that predates USB-C and USB 3.2/Thunderbolt 3 or higher. Thus, I’m purchasing the 5.25″ drive bay plug-in shown in the lead-in graphic. It needs a 19 (sometimes called 20) pin connector to get from the mobo header to the front panel device.

Thing is, I can’t tell if the device includes any cables or not. I can tell, having just checked, that the Asrock mobo includes no cables except for some SATA cables for hooking up such drives. To span the distance from the front panel to the back of the motherboard, it looks like I need to buy 3 (!) 15 cm cables to be sure to get from the bottom and back of the case to the top and front. Sigh.

When in Doubt, Spend More $$$

Just to be safe, I’m going to order the cables along with the front-panel device. If that device includes cables I’ll be sure to email Amazon to get them to update the product info. It’s currently silent on that all-important subject (to me, anyway).

And indeed, these are the kinds of conundrums that face people like me trying to refresh hardware in anticipation of meeting Windows 11 hardware requirements. I can’t see any point in having an unused high-speed USB header on my motherboard without making those ports easily accessible. Stay tuned: I’ll let you know how it all turns out.

Facebooklinkedin
Facebooklinkedin

HDD Still Claims Price-Performance 2.5″ Crown

For laptops and portable applications, 2.5″ drives still rule. Once upon a time, hard disk drives (HDDs) owned this space, both in terms of capacity and price performance. But with a 2.5″ 8TB Samsung QVO drive readily available on Newegg for US$700, HDDs no longer own the capacity crown for this space. But 8TB for $700 translates into US$87.50 per TB. The same outlet offers the 5 TB 2.5″ Seagate Barracuda for US$147.59, or US$29.52 per TB. That’s nearly 3 times lower on a per-TB cost basis (2.96 to be more precise). And that’s why HDD still claims price-performance 2.5″ crown.

How HDD Still Claims Price-Performance 2.5″ Crown

Why do mechanical hard drives still deliver better price-performance than SSDs? Because of the costs of materials and manufacturing. HDD manufacture is a mature industry and does not depend on riding the curve for IC mask sizes, scaling and so forth. SDDs on the other hand are made of chips, and that’s a challenging technology wave to ride, and a very competitive marketplace in which to compete right now. Chip shortages may not last forever, but they affect all chip-dependent industries right now, including SSDs.

That said, the form factor on the Seagate 5TB drive is outside the envelope for use inside many laptops (its 15mm height makes it “too fat” to fit; ditto for most external USB-A or USB-C drive enclosures). I’ve owned a couple of these drives and they make excellent backup and external storage devices for the half-dozen-plus laptops I keep around. A 2TB Samsung QVO goes for US$170, and is only 7mm tall (as are all capacities in this line). Thus “laptop suitability” also goes to the more expensive SSD drives.

The Tide Is Turning Toward SSDs

As far as laptops and tablets go, I don’t see much future for HDDs any more. At best, they will make useful portable or compact external storage units for mobile use. Inside the laptop itself, though — except for so-called “portable workstations” — there’s little room for drives that can’t max out capacity in the 7mm 2.5″ form factor. I guess one can hope for a next-gen technology breakthrough in platter density that will let HDDs catch back up with flash RAM chips. But I’m not holding my breath waiting for that, either. IMO the future — even for storage — is entirely solid state, not mechanical.

Facebooklinkedin
Facebooklinkedin

USB Flash Drive Follies 4th vs 11th Gen

Just yesterday I got videotaped for an upcoming session at SpiceWorld 2021 Virtual. One of the subjects I covered for HPE covered “the aging of technology” and what that does to IT efficiency, security and resiliency. That got me to thinking. “How has USB fared as faster busses, faster connections, and faster media have evolved over the past while?” I decided to conduct some USB flash drive follies 4th vs 11th gen systems to see what changed.

What’s Up With USB Flash Drive Follies 4th vs 11th Gen?

It turned into a tale of two drives, two systems, and three means of attachment. These were as follows:

Drive 1. Sabrent mSATA SSD enclosure with Samsung 950 EVO mSATA 500GB SSD USB 3
Drive 2: Fideco NVMe SSD enclosure with Sabrent Nano NVMe 1TB SSD USB 3.1
System 1: 2014 Vintage Microsoft Surface Pro 3 (i7-4650U, 8 GB RAM, USB 3)
System 2: 2021 Vintage Lenovo ThinkPad X12 (i7-1180G7, 16 GB RAM, USB 3.2/Thunderbolt 3)

The three means of attachment were USB 3, USB 3.1 (both using Type A connectors) and USB 3.2 using USB-C.

Technology Trumps Bus Speed

First things, first. There’s simply no comparison between mSATA and NVMe devices. It’s an order of magnitude from the older mSATA SSD technology to the newer NVMe. That tells me — and it should tell you — it’s simply not worth buying mSATA devices anymore. If you’ve still got them (I’ve got half-a-dozen) you can still use them.

The aging effect shows very strongly in the mSATA results. They stay pretty much the same across both systems and across all USB connection types (3.0, 3.1, and 3.2). That’s because the mSATA enclosure is either 3.0 or 3.1 (I just checked: it’s 3.0).

Things get more interesting with the NVMe devices. They run at about half-speed when there’s no UASP support on the PC (as with the Surface Pro). Amusingly, I got the same results from my Belkin Thunderbolt 3 dock with a USB 3.1 cable plugged into the NVMe enclosure. But when I used a USB-C cable directly into a USB-C port on the ThinkPad X12 I got big-block read/write speeds of ~1050 MBps read/~1004 MBps write from the NVMe flash device. Compare that to ~455 read/~457 write through the Thunderbolt dock for the same device.

Very interesting! This tells me that USB-C/Thunderbolt 3 or better drive enclosures, coupled with PCIe x3 or better NVMe SSDs in those enclosures deliver the fastest external drive storage I can use today (on my newer systems with USB-C, of course). And it looks like the performance boost from using the fastest possible port and connection is also very much worth it. Good to know!

This just makes me more interesting in acquiring a Thunderbolt 4 dock to see if it can extend that performance to secondary ports (right now, I get best speed only from USB-C ports on the X12, of which there are only 2).

Facebooklinkedin
Facebooklinkedin

Thunderbolt 4 Is Getting Underway

OK, then: first things first. Thunderbolt is a joint technology effort from Intel and Apple. The first iteration appeared in 2011, and version 4 (aka Thunderbolt 4) is just showing up in the marketplace. Intel’s 11th gen processors and supporting motherboards are the first to provide native Thunderbolt 4. And of course, add-on PCIe cards for Thunderbolt 4 are also starting to trickle out (see this ASUS item, for example). Hence the assertion that heads this story: Thunderbolt 4 is getting underway.

I’ve had recent experience to show me that the speed advantages it can confer are measurable and tangible. At the same time, I’ve learned that the right cables can — and do — make huge differences.

What Thunderbolt 4 Is Getting Underway Really Means

The following table sums up the differences among Thunderbolt 3 and 4, and USB 3 and 4 versions. Basically, it offers more and faster capabilities, but is limited to special, certified cables no more than 2M in length. It can also handle either 2 4K displays or 1 8K display, and works with the latest PCIe 32Gbps lanes. It is, in fact, a pretty strong argument for all-around hardware upgrades (mobo and ports, cables, and peripherals) all by itself. Check the table for details, please.

. Thunderbolt 4 Thunderbolt 3 USB4 USB 3/DP
1 universal port
40Gb/s cables up to 2 meters
Accessories with up to 4 TB ports
Min PC speed requirement 40Gb/s 40Gb/s 20Gb/s
(40Gb/s is optional)
10Gb/s
MinPC video requirement 2 x 4K displays
or
1. x 8K display
1 x 4K display 1` display (no min resolution) 1 display (no min resolution)
Min PC data requirements PCIe 32Gb/s
USB.3.2 10Gb/s
PCIe 16Gb/s
USB 3.2 10Gb/s
USB.3.2 10Gb/s USB 3.2 5Gb/s
PC charging port required At least one
PC wake from sleep w/TB dock connected Required
MinPC port power for accessories 15W 15W 7.5W 4.5W
Thunderbolt networking
Mandatory certification for PCs and accessories
Intel VT-d based DMA protection required
USB4 specification Compliant Compatible Compliant Compatible
Source: Table from 11/20/2020 Liliputing story about Thunderbolt and USB versions.

What I Plan To Do About Thunderbolt 4

I’ve got a new PC build in my relatively near future (as soon as finances allow). I’ll be making sure to pick motherboard and CPU with Thunderbolt 4 support. I’m looking around right now and while some cases do offer USB-C support, none of them have caught up to Thunderbolt 4 capability just yet. I may end up waiting for that to occur, and go ahead and recycle the trusty old Antec 902 case I recently reclaimed from my sister. This may take some further thought and research. Stay tuned!

Facebooklinkedin
Facebooklinkedin

MediaCreationTool.bat Gets 21H1 Update

There’s an interesting spin on Microsoft’s Media Creation Tool available on GitHub. It’s known as MediaCreationTool.bat, and basically it allows users to build an ISO (or a bootable USB device) for any version of Windows 10 from 1507 all the way up to 21H1. By saying “MediaCreationTool.bat Gets 21H1 Update” I’m informing readers an updated version now includes 19043 Builds (21H1).

If MediaCreationTool.bat Gets 21H1 Update, Then What?

I wrote about this tool last year for Win10.Guru where you’ll find background and info about the developer. This GitHub project throws up a menu (see center of Command Prompt window above) that lets users pick the version of Windows 10 for which they want to grab an image. As MCT has always done, it lets them apply an update to the current PC. More commonly, it also lets them create an ISO or build bootable USB media with the chosen image aboard.

A couple of steps are needed to make the batch file usable, however. First, it won’t run unless it gets a .bat extension. You can right-click the GitHub page, select “Save-as” and then make sure to pick “All files” from the File type option. Otherwise, it saves with a .txt extension which must be removed through a file rename operation. Either way, you’ll want to open the properties for this file in Explorer, then click the Unblock button to make sure the OS doesn’t prevent its execution.

Using the Batch File Is a Snap

Then, open an Administrator: Command Prompt window, navigate to the directory where the batch file resides, and run it. I right-click the file name in explorer and grab the name from the Properties window. Then I can simply paste the string into Command Prompt to avoid re-typing. It’s what produced the lead-in graphic for this story.

Because the batch file changes each time a new Windows version comes out, you should get in the habit of visiting the developer’s home page for the script to grab the latest version. From there, click the “Raw” button to open a Web page with the latest version inside.

MediaCreationTool.bat Gets 21H1 Update.homepage

Click the Raw button at upper right and web page with the script text inside will open. Then you can follow the preceding “Save” instructions for your very own copy.
[Click image for full-sized view.]

I’ve gotten in the habit of naming the file to include the version number for the most current one it supports. Thus, I named the most recent such file MediaCreationTool21H1.bat. Hope that makes sense. Enjoy! Good stuff.

Facebooklinkedin
Facebooklinkedin

USB Cables Make Amazing Differences

A couple of weeks ago, I read an online item bemoaning the variations in USB cables, especially those with USB-C connectors on one or both ends. This weekend, I experienced this phenom for myself. I also learned that the right USB cables make amazing differences in speed/throughput.

In the lead-in screenshots above, CrystalDiskMark speeds for the same device appear at left and right. To the left is the US$26 Fideco M.2 NVME External SSD Enclosure – USB 3.1. It’s linked to my Lenovo Yoga X390 through its USB 3.1 port using the vendor-supplied cable. Inside is the Sabrent 1TB Nano M.2 2242 SSD I’ve been writing about a lot lately. To the right everything is identical except I used a USB 3.1 Gen 2 cable. It’s rated at “up to 10 GBPS.”

No Lie: USB Cables Make Amazing Differences

Why on earth would the equipment vendor ship such a POS cable with an otherwise capable NVME enclosure? Speed results for the in-box cable (right) versus a US$7 cable purchased from Amazon differ starkly. For bulk transfers, the Amazon cable is 10 or more times faster. For 4K random reads and writes (bottom two rows), it’s between 6 and 7 times faster for queue depth = 32. That drops to 2 to 3 times faster for queue depth = 1.

Clearly, this is a red flag. It tells us that faster USB-C cables can speed peripheral I/O significantly. It also indicates that one should know what kinds of cables to buy. I got the speed-rated cables so I could see if they did make a difference. Little did I know I would actually benefit greatly from this experiment.

Wrinkles in the Plug-n-Play Experience

The question with USB-C cables is not “Will it work?” Rather, it should be “How fast does it go?” I’ve just learned that big differences sometimes present themselves. Testing your devices is the only way to confirm what kind of performance you’re getting. In my case, it quickly showed me that a high-speed USB-C cable is a worthwhile expense.

FWIW, this experiment also  explained some of the cost differential between the US$26 Fideco unit linked above and the US$45 Sabrent units I also own. The latter ships with USB-C 3.1 Gen 2 cables that perform on par with the speed-rated cables I mentioned near the outset of this story. The NVME enclosures are more or less on par performance wise. That’s NOT true for the in-box USB-C cables, though. There indeed: you get what you pay for!

Facebooklinkedin
Facebooklinkedin