Category Archives: Benchmarking

Windows 11 22H2 File Copy Fix Works

OK, then: I read the WinAero story about fixing the “slow file copy bug” in Windows 11 22H2. Indeed, it picqued my interest. “Hmmm,” I thought, “Maybe I can see on the P16 Mobile Workstation?” Yes, I could. I’m happy to confirm that the Windows 11 22H2 file copy fix works — on that PC, at least. What does this mean?

Take a look at the lead-in graphic. It’s a paused file copy. The file comes from my external F: Drive. (That’s a Sabrent Rocket 4 Plus 1 TB PCIe x4 NVMe SSD in a USB4 Acasis drive enclosure.) It’s copied to my built-in C drive. (That’s an internal Kioxio 2TB PCIe x4 NVMe SSD). Except for a dip about half-way through, it shows data rates from 1.2 to 2.3 GBps for a 20-plus GB file copy (a Macrium Reflect backup image).

That’s much, much better than the 600 – 950 Mbps I’d observed the last time I tried this with the same pair of devices. Looks like KB501738 issue does indeed get resolved in the latest Dev Channel Build (25252). I’m jazzed.

More Data: Windows 11 22H2 File Copy Fix Works

Even my slower USB3.2 NVMe Sabrent PCIe x3 with its older Samsung 950 1 TB SSD also shows a similar improvement. It shows a range of 750 MBps to a momentary high of 1.1 GBps in its copy of the same Macrium image file instead.

Gosh! It’s always nice when a usable performance bump occurs. It’s even better when the bump is both noticeable and measurable. And it makes the cost of relatively expensive NVMe drive enclosures more tolerable — maybe more justifiable, too — when the bump helps improve productivity.

Who knows? I might need to rethink my current take that paying US$100 extra to upgrade a USB3.2 NVMe enclosure to USB4 is too expensive. Stay tuned: more to follow next week!


No Remote WinSAT No Batteries

In following up on yesterday’s memory training item, I started messing about with WinSAT. For those not already clued in, WinSAT stands for Windows System Assessment Tool. As it turns out, such assessment depends on steady, reliable power and “close to the metal” access to the PC it’s assessing. That’s why, I believe that MS says “You cannot run formal assessments remotely or on a computer that is running on batteries.” (Using WinSAT). Hence the assertion: no remote WinSAT no batteries.

If No Remote WinSAT No Batteries, Then What?

A formal assessment on WinSAT runs a whole battery of checks. You can still do feature-by-feature checks remotely (just not the whole thing). Here are the results of WinSAT mem over a remote connection to one of my 2018 vintage Lenvo X380 Yoga ThinkPads:

No Remote WinSAT No Batteries.rem-mem

A single feature check — mem, or memory — does work remotely.

But if I run the whole suite (WinSAT formal) in the same PowerShell session, I get an error message instead:

No Remote WinSAT No Batteries.rem-formal

Going formal with WinSAT “cannot be run remotely…”. No go!

Such things lead to head-scratching from yours truly. I can kind of get it because it’s undoubtable that the remote connection is going to affect results reported because of the time involved in remote communications. But why allow checks one-at-a-time, but not all-at-once? MS is mum on this subject, so I’m not getting any insight there. It could be that singleton checks add relatively little overhead, but that cumulative effect of an entire suite of same adds noticeable delay. Who knows?


USB4 Delivers Consistent NVMe Performance

OK, then. I finally laid hands on my second USB4 NVMe SSD enclosure yesterday. I deliberately sought out the cheapest one I could find so I could compare it to a more expensive alternative already on hand. When I say that USB4 delivers consistent NVMe performance here’s what that means:

1. The same SSD, cable, and host PC are used for comparison. Both drives have the “cache tweak” applied (this Oct 14 post has deets). Same tests performed, too (CrystalDiskMark and a Macrium Reflect backup).
2. The only thing that changes is the enclosure itself.

In short, I wanted to see if spending more on hardware returned a noticeable performance advantage (I’ll talk more about this below). Long story short: it doesn’t seem to make much, if any, difference. Let me explain…

Why Say: USB4 Delivers Consistent NVMe Performance?

The lead-in graphic shows the results from the cheap enclosure on the left, and the more expensive one on the right. The average difference in CrystalDiskMark performance shows 2 wins for el cheapo, 5 wins for the higher priced item, and 1 tie. On first blush, that gives the more expensive device an advantage. So the next question is: how much advantage?

This is where a little delta analysis can help. I calculate that the average performance difference between devices varies from a high of 6.2% to a low of 0.03% (not including the tie). That said, the average performance difference across all cells is merely 1.54%. (Calculated by taking absolute value for each delta, then dividing by the number of cells.) That’s not much difference, especially given the prices of the two devices: $128.82 and $140.71. That delta is 8.4% (~5.5 times the average performance delta).

I will also argue that comparing CystalDiskMark results is interesting, but not much of a real-world metric. Thus, I’ll compare completion times for a Macrium Reflect image backup on the same PC, same OS image. The expensive device took 2:25, the cheap one 2:44. That’s an 11.5% difference, greater than the price delta but not amazingly so.

Deciding What’s Worthwhile

I can actually see some differences between the two enclosures I bought. One thing to ponder is that NVMe drives tend to heat up when run full out for any length of time (as when handling large data sets, making backups, and so forth). I’ve seen temps (as reported in CrystalDiskInfo, reading SMART data) go as high as 60° C while M.2 SSDs are busy in these enclosures. At idle, they usually run at around 28° C. The more expensive NVMe enclosures tend to offer more surface area to radiate heat while active, so that’s worth factoring into the analysis.

But here’s the deal: I can buy a decent USB3.1 NVMe enclosure for around US$33 right now. The cheapest USB4 NVMe enclosure I could find cost almost US$96 more. That’s a multiplier of just under 4X in price for a device that delivers less than 2X in improved performance. Let me also observe that there are several such enclosures that cost US$160 and up also on the market. I still have trouble justifying the added expense for everyday use, including backup.

There will be some high-end users — especially those working with huge datasets — who might be able to justify the incremental cost because of their workloads and the incremental value of higher throughput. But for most business users, especially SOHO types like me, the ouch factor exceeds the wow value too much to make it worthwhile. ‘Nuff said.


P360 Ultra Gets Second NVMe

A couple of days ago, I praised the interior design of the Lenovo P360 Ultra SFF PC (link). I just had to remove the GPU to access the second NVMe slot on an Asrock B500 Extreme4 motherboard last week. Let’s just say it wasn’t incredibly easy (and some expletives were involved). That really made me appreciate an install that required less than two minutes all the way around. But now that the P360 Ultra gets second NVMe, I want to report on the results.

When P360 Ultra Gets Second NVMe, Speed Abounds

What you see as the lead graphic for this story is a pair of CrystalDiskMark results. To the left, the internal C: furnished with the PC (a Samsung 1TB OEM drive: MSVL21T0HCLR). To the right, the internal D: I installed (WD Black SN850).

First, let’s look at those results. The Samsung drive enjoys an 18% edge on the sequential read (queue depth 32, single thread) and a  33% gain on random read (queue depth 1, single thread). The WD Black comes out ahead on all other readings.

That’s not surprising, given that the WD Black SN850 is a newer, more capable drive. But those results also speak to the notion that one should definitely populate open NVMe slots if speedy storage is helpful to the workloads a PC must handle.

P360 Ultra Gets Second NVMe.external

Same WD Black drive in a USB4 external NVMe enclosure: much slower.

Internal vs. External NVMe

The preceding screengrab shows CrystalDiskMark results for the same drive, but housed in an external NVMe enclosure. It happens to be a USB4 enclosure, and represents as much speed as I’ve been able to get from an external NVMe drive. It’s significantly slower across the board, but still not bad.

If I drop the same drive down to a USB 3.1 enclosure, it runs at standard UASP speeds (at or under 1000 in the top 4 cells). Interestingly the bottom four cells don’t change much for either USB4 or USB3.1. Backup speeds don’t change that much, either. That’s why I’m not convinced the USB4 enclosure is worth a $100 premium (it improves backup speeds by 30 seconds, give or take).

One More Thing…

If you’re buying an NVMe drive for an external enclosure, there’s no need to spend big on a fast, capable storage device. It won’t be able to run full out because the USB link (either 3 or 4) can’t keep up with top-end NVMe speeds. As the preceding CrystalDiskMark chart shows, you can’t come near the 6-7 GBps or so performance that top-end NVMes deliver these days.

On the other hand, if you’re going to put that device into an M.2 slot INSIDE the PC or laptop, that’s a whole ‘nother story. Then, you should buy as fast as you can stand to pay for — assuming, that is, that the PC or laptop can make full use of those capabilities.


Thinking About Windows 10/11 SSDs

I’m still busy benchmarking away on the two Thunderbolt4/USB4 PCs that Lenovo has recently sent my way. But as I’ve been doing so, I’ve been thinking about Windows 10/11 SSDs in general. On that path, I’ve realized certain principles that I’d like to share with you, dear readers.

I’m spurred in part to these statements from a sponsored (and pretty contrived) story from MSPowerUser entitled “Is NVMe a Good Choice for Gamers?” My instant response, without reading the story — which actually focuses on storage media beyond the boot/system drive — was “Yes, as much as you can afford.” Spoiler alert: that’s what the story says, too.

Where Thinking About Windows 10/11 SSDs Leads….

Here are some storage media principles that flow from making the most of a new PC investment.

  1. The more you spend on a PC, the more worthwhile it is to also spend more on NVMe storage.
  2. Right now, PCIe Gen4 drives run about 2X the speed of PCIe Gen3 drives. They don’t cost quite twice as much. Simple economics says: buy the fastest NVMe technology your PC will support.
  3. Buy as much NVMe storage as you can afford (or force yourself to spend). For pre-built PCs and laptops, you may want to buy NVMe on the aftermarket, rather than get the drives pre-installed. Markup on NVMe drives can be painful. Hint: I use Tom’s Hardware to keep up with price/performance info on NVMe SSDs and other PC components (it’s also the source for the lead-in graphic for this story, which still prominently displays the now-passe Intel Optane as an SSD option. Caveat emptor!).
  4. Corollary to the preceding point: fill every M.2 slot you can in your build. For both my recent Lenovo loaners — the P360 Ultra and the P16 Mobile Workstation — that means populating both slots with up to 4TB each. Right now, the Kingston KC3000 looks like a 4TB best buy of sorts.

Thinking Further (and Outside the Box)

More thoughts in this vein, with an eye toward external drives and multi-tiered storage (archives and extra backups):

  1. If you’re going to put an NVMe SSD in an external enclosure, you will be OK for the time being in a USB 3.2 rather than a USB 4 enclosure. Right now, the newer enclosures cost more than twice as much but don’t deliver anywhere near 2x the speed (except on synthetic benchmarks — I used C: imaging times as a more reliable indicator). Over time this will no doubt change, and I’ll keep an eye on that, too.
  2. I don’t consider spinners (conventional mechanical hard disk drives, or HDDs) any more, except for archival and inactive storage. If I need something for work or play, it goes on an SSD. If I might need something, someday (or to restore same) then it’s ok on an HDD.

I used to restrain spending on NVMe SSDs because of its high price differential. I’m now inclined to believe that restraint is a false economy and forces less productivity as a result. That’s why I’m rethinking my philosophy. I haven’t quite yet gotten to Les Blanc’s famous dictum (“Spend It All”) but I am coming around to “Spend As Much as You Can”…

Remember This Fundamental Assumption, Tho…

My reasoning aims at high-end PCs where users run data-, graphics-, and/or compute-intensive workloads. It does not apply, therefore, to home, hobbyist, and low-end office users. For them typical productivity apps  (e.g. MS Office or equivalent), email, web browsing and so forth predominate. They wouldn’t need, nor benefit much from, buying lots of fast NVMe storage. That said, a 1 TB fast-as-possible NVMe for the boot/system drive is the baseline. Other storage options will balance themselves against budget to dictate other choices and PC builds for such users.

In different terms, if you’re not maxing out your PC running data analytics, 3D models and other high-end graphics rendering, or AI or machine learning stuff, this advice is most likely overkill. Too, too costly. But for this user community, more spent on NVMe (and GPUs and memory as well) will repay itself with increased productivity. ‘Nuff said.


Backblaze Data Confirms SSD Trumps HDD Reliability

It’s always made sense on an intuitive basis. Hard Disk Drives (HDDs) include spinning platters, moving arms with read/write heads, motors to power things, and gears to control action. SDDs are made entirely of circuitry: no moving parts. Thus, it’s compelling to assert that SDDs should be more reliable, and less prone to failure than HDDS. And indeed, the latest 2022 Drive State report from online backup and storage provider Backblaze weighs in on this topic. As I read it, that Backblaze data confirms SSD trumps HDD reliability.

The lead-in graphic shows 4 years’ worth of SSD data vs. 8 years for HDDs for boot drivers in their thousands of datacenter based servers. Whereas there’s a dramatic upward knee in the curve for HDDS between years 4 and 5 (from 1.83% to 3.55%), failures actually dipped for SDDs during that interval (from 1.05% to 0.95%). Interesting!

How Backblaze Data Confirms SSD Trumps HDD Reliability

The afore-linked report explains that boot drives function in multiple roles on the company’s plethora of storage servers. They store log and temprorary files; they maintain storage holdings based on each day’s storage activities and volume. The disparity in the number of years for which data is available comes from later adoption of SDDs as boot drives at BackBlaze. That practice started in Q4 2018. Today, all new servers boot from SSDs; older servers whose HDD boot drives fail get SSD replacements.

The numbers of SSDs keep going up, too. The end-of-year 2021 SSD report encompassed 2,200 SSDs. By June 30, 2022, that count grew to 2,558. Failure rates for such devices show much lower numbers than for HDD (see the tables labeled Backblaze SSD Quarterly Failure Rates in the latest report for more detail). Models included come from the following vendors: Crucial, Dell, Micron, Seagate and WDC.

Note: the report itself says:

For any given drive model in this cohort of SSDs, we like to see at least 100 drives and 10,000 drive-days in a given quarter as a minimum before we begin to consider the calculated AFR to be “reasonable”.

The real news, of course, is that quarterly, annualized and lifetime failure rates for SSDs are significantly lower than for HDDs, based on Backblaze’s own long-running data collection. Thus their conclusion comes with the weight of evidence “…we can reasonably claim that SSDs are more reliable than HDDs, at least when used as boot drives in our environment.”

Good stuff! As for me, I like SSDs not just because they’re less prone to failure. They’re also FAST, if more expensive per storage unit than spinners.




Thunderbolt Dock Loses GbE Port

Drat! In jacking around with my Belkin Thunderbolt 3 Dock Plus today, I couldn’t help but notice that the wired Ethernet port wasn’t blinking. Further testing included multiple cables and connections to the same port, none of which worked. When I tried a passive Thunderbolt 3 mini-dock in the other USB-C port on the Lenovo X12, that wired Ethernet port worked immediately. Thus, I can only conclude that Thunderbolt Dock loses GbE port is the right diagnosis. Sigh.

Note: The lead-in graphic for this story shows the rear view of the aforementioned Belkin device, with its RJ-45/GbE port at the left. No blinkin’ lights, man!

If Thunderbolt Dock Loses GbE Port, Then What?

For the time being, I’m using another dock — the Thunderbolt 3 Minidock — just for its RJ-45 GbE connection. Good thing my X12 Hybrid has a spare USB-C/Thunderbolt port, eh?

Longer term, I’ve already contacted Belkin about sending me a replacement. They’ve got a nice looking Thunderbolt 4 dock for sale now, so hopefully they’ll ship one my way. I’ve also gone ahead and ordered the CalDigit TS4, reputedly one of the best Thunderbolt 4 docks on the market today.

Thunderbolt 4 Docking Brings Other Benefits

Acquiring one or more Thunderbolt 4 docks will also help with my ongoing testing of NVMe SSD enclosures. As I reported a few days ago, switching from USB-C/3.1 or 3.2 to Thunderbolt 3 makes a difference in IO performance on my fastest SSD enclosure/drive combos. I’m curious to see if a bump to Thunderbolt 4 will make any additional difference.

According to what I read, throughput doesn’t vary that much for external drives from Thunderbolt 3 to 4. I’ve also observed that synthetic IO tests (e.g. CystalDiskMark) tend to overstate the real-world speed-ups available from faster buses. Thus it will be interesting to observe exactly how much difference the bump from 3 to 4 makes.

Stay tuned! I’ll let you know what comes of that testing. Should be fun!


Samsung NVMe Drive Failing

In a recent story here, I mentioned a possible mismatch between some components. On the one hand: an old Samsung MZVPV512HDGL OEM NVMe drive. On the other hand: a brand-new PCIe x4 USB 3.2/Thunderbolt NVMe enclosure. Upon swapping in a newer ADATA drive my issues with the enclosure vanished. So I mounted the other drive in an older Sabrent NVMe enclosure. Now I’m getting indications of the Samsung NVMe drive failing. A strong indicator shows up as the lead-in graphic above.

What Says: Samsung NVMe Drive Failing?

The inability to perform write tests using HD Tune is a pretty big tell. Interestingly, though: chkdsk and CrystalDiskInfo both report the drive as healthy. My best guess is that write failures are occurring, and that HD Tune won’t “write past” such things, while the other tools rely on SMART data and surface analysis and aren’t seeing active errors.

My plan is to retire the drive as soon as the replacement part shows up. That’s been en route via Amazon for too long now, so I just cancelled that order and placed a new one. Hopefully it will be here tomorrow, including a 1TB Sabrent Rocket 4 Plus with internal read/write speeds of up to 6+/4+ Gbps. Of course, that’s not gonna happen in a USB 3.2/Thunderbolt enclosure. But I am darn curious to see how fast the bus can go when the drive is fast enough to get out of the way.

Stay Tuned: More to Come!

According to what I read online, I may be able to get read/write speeds in excess of 2 Gbps via Thunderbolt 3 from the NVMe enclosure. So far, the best I’ve seen from my older Sabrent (USB 3.2 only) enclosures is on the order of 1.1 Gbps. So it should be pretty easy to tell if the new drive/enclosure speeds things up.


Thunderbolt 3 SSD Enclosure Raises Odd Issues

This is the part of playing with Windows that I love best. I’m researching different speeds for backup drives, ranging from a USB-C HDD drive caddy into the SSD realm. My objective is to see how fast an external USB-C drive can go, and to see if Thunderbolt support makes any difference.  I added a cheapo (US$29) NVMe enclosure to my line-up. But alas, that Thunderbolt 3 SSD enclosure raises odd issues. Let me explain…

Why Thunderbolt 3 SSD Enclosure Raises Odd Issues

As far as I can tell, I went too far back in time with the first M.2 NVMe I tried out in the cheapo new NVMe enclosure. My initial attempt featured a 2016 vintage OEM Samsung MZVPV512HDGL SSD. It kept blowing up during write testing in CrystalDiskMark, and it wouldn’t make a Macrium Reflect backup.

So I cannibalized a newer ADATA XPG 256GB SSD (vintage 2020) from my Sabrent-enclosed Ventoy drive and tried that instead. It worked just fine, and got aggregate read/write speeds from Reflect of 5.7/3.0 Gbps when backing up my Lenovo X12 Hybrid Tablet. It includes a USB 3.2 version of USB-C with Thunderbolt 3 support. Total backup time on that system was 6:16 with 76.5 GB on the C: drive and under 1.5 GB on the other partitions. Figure 78 GB overall, that produces a physical time (no compression) of roughly 200 Mbps of ongoing read/write activity. By comparison an mSATA drive (vintage 2013) takes just under16 (15:56) minutes to complete the same backup. That’s more than 60% faster!

It’s All About the Speed

My best guess is that the older drive wasn’t sufficiently compatible with the PCIe x3/x4 requirements inside the NVMe enclosure. Once I switched over to something newer (and definitely PCIe x3 compliant), everything worked fine. I’ve got a brand-new PCIe x4 SSD coming today or tomorrow, and am hopeful the faster media will also produce faster transfer rates for backup, too. We’ll see!


Why USB Disk Speeds Matter

It’s been a busy and interesting week. I’ve been messing around with numerous backups and restores. Ditto for mounting ISOs and running Windows repair installs. A LOT of disk reads and writes to USB drives have been involved. Because of the huge amounts of data involved, I’m better prepared to explain why USB disk speeds matter. A LOT!

Why USB Disk Speeds Matter So Very Much

In a word, the shortest possible answer is “Time.” If you can get something done faster, you can do more in a single work interval. Compare the USB disk speeds for an NVMe drive in a USB-C enclosure (left) to those for an mSATA drive in a USB-A 3.1 enclosure (right — see lead-in graphic). When backups and restores are concerned the top lines (which involve large file transfers) actually matter. Of course, all the times matter as well.

But those differences are pretty stark for backup and restore. Let me explain… If you look at the top pairs of numbers, these cover large data transfers with a queue depth of 8 (upper) and 1 (lower). In both pairs of numbers, the NVMe drive is over twice as fast as the mSATA drive. Those same results were born out in backups and restores (7 and 14 minutes for backup; 11 and 23 minutes for restore).

The More You Do, the Better You’ll Like It!

Those results show why I’ve long been a believer in using fast USB drives whenever possible. I’m still waiting to see what kind of bump I can get with a Thunderbolt 4 NVMe enclosure, proper cables and enclosure, and Thunderbolt 4 on the host device. From what I read, it should be 25-40% as fast again.

This realization came to me when I started copying a backup from a BitLocker protected NVMe drive to an mSATA unprotected drive. I got a consistent 26-27 MBps transfer rate between the two devices. It took over 20 minutes to copy the file!

If I could’ve gone Thunderbolt 4 all the way, I could have quadrupled the transfer speed or better. That would cut my wait time from 20 minutes to 5. Waiting for necessary data can’t be completely bypassed — but it surely shows the “need for speed” on such occasions.