Category Archives: WED Blog

Docking Discrete GPU Laptops Trick

Inquiring minds want to understand how to get the best graphics performance when using a multi-purpose, high-bandwidth connection. Yes, I’m talking about a Thunderbolt 4 dock (like the CalDigit TS4 or the Belkin Pro Thunderbolt 4). Turns out there’s BIOS tweak involved: it’s my “docking discrete GPU laptops trick.”

OK, What Is the Docking Discrete GPU Laptops Trick?

By default, most dual-GPU laptops run in dual or hybrid graphics mode. That is, they use the built-in GPU unless a specific application requires or prioritizes the discrete GPU. When running on battery, in fact, they only use the built-in GPU unless forced to use the discrete GPU instead, to extend runtime.

My trick comes in at the BIOS level. Thus, for example, the Lenovo P16 Mobile Workstation, has a BIOS setting under Config →  Graphics Device. It takes possible values of Hybrid Graphics (the default) or Discrete Graphics (the alternate). If you switch from the default to the alternate, the laptop always uses the discrete GPU to drive display outputs.

When using a dock, one is perforce plugged in for power (either separately, or through the dock itself, which has its own heavy-duty external power supply/brick). That means it’s safe to use the more power-hungry (but also, more capable) discrete GPU to drive two or more displays.

For Thunderbolt 4, docks are limited to a single 8K display or dual 4K displays (usually via DisplayPort, aka DP, and/or USB-C). So far, I have found this connection to work indistinguishably from my production desktop. It’s got an Nvidia RTX 3070 Ti with dual DP Dell UltraSharp 2717 2K monitors attached. The docks drive the same outputs equally well.

Uh-Oh: Must I Raise My Display Ante?

Right now, I can’t really drive the graphics end of things to the level where it would stress Thunderbolt 4. I’m wondering if that means I need to buy up, and replace my 2017 vintage monitors with something like the Dell UltraSharp U2723QE. At US$600 and up, two of those would sting the bank account a bit (its stunning display serves as the lead-in graphic for this story). But it may be time for a display refresh here at Chez Tittel, so to speak.

Let me check with “The Boss” (wife, Dina) and get back to you on that…

Facebooklinkedin
Facebooklinkedin

Flash Drive Goes Incredibly Slowly

Here’ s an interesting item. Last week, when trying to troubleshoot the graphics driver on the Lenovo P360 Ultra SFF PC, I ran into an interesting follow-on issue. I decided to copy the “old driver” file to a flash drive to take it upstairs where the unit lives (networking issues temporarily kept me from using RDP, as is my more typical practice). And gosh, I couldn’t help but notice my Mushkin Atom flash drive goes incredibly slowly when copying that 649K file.  The deets, courtesy of File Explorer, provide the lead-in graphic for this story.

If Flash Drive Goes Incredibly Slowly, Then What?

Just for grins, I plugged in an older USB3 mSATA device and copied the target file again. Despite its antique vintage (2014 or thereabouts) it beat the snot out of the flash drive. As you can see in the next screencap, it achieved a data rate of 236 MB/sec. That’s a whale of a lot faster than the paltry 12.5 MB/sec shown in the lead-in graphic.

Flash Drive Goes Incredibly Slowly.copy-speed

The SSD-based USB device is more than 18 times faster than the flash-based device. Wow!

What does this say? It says that older mSATA SSDs are worth keeping as a much speedier alternative to flash drives. Back when I bought the Sabrent enclosures in which my 3 mSATA drives are housed — I have one each 256, 512 and 1,024 MB devices — I paid US$60 or thereabouts to buy them. Now, you can pick them up at Amazon for US$14.

Flash Drive Goes Incredibly Slowly.msata-device

For US$14, you can move files around a whole lot faster!

To me, that’s money incredibly well spent, given the half-dozen or so mSATA drives I still have kicking around here. If you’ve got one or more sitting idle, this would be a smart buy for you, too.

Note Added 2 Hrs Later: Cheaper Than Flash!

You can buy a 256GB mSATA SSD for under US$30 right now. That makes the total price around US$45 for enclosure and drive. That’s about 3X what you’ll pay for a 128 GB flash drive, and less than some “faster” 256 GB flash drives cost. To me, this argues even more strongly that this is a good way to boost your USB storage arsenal without breaking the bank.

Facebooklinkedin
Facebooklinkedin

Windows Upgrades Bring New Drivers

Whenever one upgrades a Windows installation, the installer locates and installs a new slate of drivers by default. There are ways to overcome this by customizing the Windows install image (with DISM, for example). But I was forcibly reminded that Windows Upgrades bring new drivers. It happened two days ago when the Installation Assistant took the P360 Ultra to Windows 11 22H2.

Fortunately, I knew how to fix this. Because the latest Nvidia driver is the culprit, I simply switched to Intel UHD graphics. This took me from a black screen to working graphics output. I’ll roll back the affected driver this weekend. That will put things back to rights.

Showing Windows Upgrades Bring New Drivers

I had to roll back the Nvidia driver on the P360 Ultra to get the RTX A2000 GPU to work. That’s because there is a known issue with all drivers newer than 30.0.15.1165, as I learned from Lenovo’s engineering folks last week (see this Sept 16 item for details).

I’m a big fan of the GitHub DriverStore Explorer project (aka RAPR.exe). As you can see from the following screen snippet, there’s an older INF file on the U360 Ultra for my proper target version (30.0.15.1165). But alas, DevMgr won’t roll back to that version (I think it’s because the older version is a Quadro/Studio driver, while the new, in-place version is a Game-ready driver).

Windows Upgrades Bring New Drivers.RAPR

RAPR confirms that the new version is installed, and shows the old version, too. [Click image, then zoom to 200%.]

Luckily I still have the Lenovo update package that they provided. As its Properties window shows, file m3vdo008d.exe is exactly what I need. I know from recent experience – the first time I fixed this gotcha – that I can simply install this exe file, and it will replace the buggy new driver with the stable, working older driver. Sometimes, one has to run the Driver Display Uninstall (DDU) tool to completely remove all traces of the new, before installing the old. That’s NOT the case here, I’m happy to say.

Windows Upgrades Bring New Drivers.LenovoPkg

If I install this older driver, I can then use the Nvidia GPU without problems.

How Driver Trouble Happens During Upgrade

If a particular PC needs an older (or non-current) driver, Windows isn’t smart enough to steer around such potholes. As soon as I upgraded this PC, I knew I was going to have to fix the automatic update it would make to the latest (and incorrect) Nvidia driver. Sometimes, that’s the kind of thing you need to watch out for when upgrading Windows. Consider yourself notified, if not warned!

Facebooklinkedin
Facebooklinkedin

Thunderbolt Software Upgrade Strategy

At first I thought “Catch-22.” Those using PCs old enough to run Intel’s Thunderbolt Software have reason to ponder Heller’s famous catch. An updated replacement — namely, Thunderbolt Control Center — is available from the Microsoft Store. But if you run Thunderbolt Software, it doesn’t show up there. Nor is there an easy upgrade path. That’s why, in fact, I had to come with a Thunderbolt Software upgrade strategy.

Finding a Thunderbolt Software Upgrade Strategy

All I can say is “I got lucky.” I chose as my search string to dig into this topic “Thunderbolt Software vs. Thunderbolt Control Center.” It immediately struck gold in a Forum post from Mac/PC oriented website egpu.io. There, those same terms appeared in inverted order.

There’s a trick involved in making this upgrade. It works as follows: if one downloads newer DCH drivers for the Thunderbolt device in DevMgr → System Devices, updating that driver causes Windows 11 (or 10, for that matter) to update the related software automatically. It’s actually pretty easy. I’m going to upgrade my remaining holdover system (one of my Lenovo X380 Yogas, acquired in late 2018) and take you through the steps involved.

NOTE:For a Thunderbolt device to show up in DevMgr, you may need to plug in an actual Thunderbolt or USB4 device. That’s what I had to do on each of my three 2018 vintage systems that needed this upgrade.

Making the Transition, Step-by-Step

Step 1: Visit this Intel Download page and download the ZIP file available there. Don’t be put off by the NUC notation: I’ve run in on a Yoga 380 and an X1 Extreme, and it worked on both systems. It seems to work on any Intel Thunderbolt controller.

Step 2: Unzip the file into a target directory. I named mine TBdev to make it easy to identify.

Thunderbolt Software Upgrade Strategy.unzipped

Contents of the ZIP file in the V:\TBdev folder. The INF folder is where the action will be.

Step 3: Open DevMgr, navigate to the Thunderbolt controller, right-click, and pick “Update driver.” In the resulting pop-up window, pick “Browse my computer for drivers “(lower item). Browse to your TBdev\INF folder, as shown here, then click “Next.”

Click “Next” and the driver should update itself from the various files in the INF folder.

If this process succeeds, you’ll see something like the following Window appear.

Guess what? If this worked, you’re finished. Windows will now visit the MS Store on its own and install the Thunderbolt Control Center app for you. Until you next reboot your PC, you’ll see both the old software and the new side-by-side if you type “Thu” into the Windows 11 (or 10) search box:

Old (Thunderbolt software) on the left, new (Thunderbolt Control Center) on the right. Only TCC will work, tho…

After the next reboot, Thunderbolt Software no longer appears. Case closed!

Facebooklinkedin
Facebooklinkedin

P16 Safeguard Hold Blocks Windows11 22H2

When the news hit yesterday that the gradual rollout for Windows 11 22H2 was underway, I had a feeling… I’m someone who’s perpetually or chronically excluded from the first round of many new Windows releases or features. And so it was for my brand spanking new Lenovo P16 Gen1 Mobile Workstation. Because a P16 Safeguard Hold blocks Windows11 22H2, it gets the “coming soon” message shown in the lead-in graphic. Sigh: here I go again.

If P16 Safeguard Hold Blocks Windows11 22H2, Then What?

Wait for MS to lift the hold, and check the other machines. My two- week-old Lenovo P360 Ultra didn’t even get the “coming soon” message. Those are both 12th Gen i9 CPU based machines. Right now, I’m checking my Lenovo Yoga 7i (11th Gen i7) and X1 Carbon (8th Gen i7) PCs. So far, neither has gotten the offer either. That still leaves the Ryzen 5800X build upstairs to check, but I think I know what I’ll find…

That said, the MS Download Windows 11 page is already offering ISOs for 22H2. I can force the upgrade if WU isn’t offering and it’s not on Safeguard Hold status. That describes 4 of my 5 PCs running Windows 11 21H2 right now. I’ll have to think about what I want to do with them, item-by-item.

P16 Safeguard Hold Blocks Windows11 22H2.dl22h2

For those who want to push the boundaries, MS also makes 22H2 ISOs available for download. [Click image for full-sized view.]

What’s Next, at Chez Tittel?

Right now, I’m standing pat. I’ve got a couple of other projects underway. I want to make progress on those, and then I’ll start thinking about which PCs to advance to 22H2, and which to leave alone. Given that the P16 is on Safeguard Hold, I’ll wait on that one. But as a straight-up test machine, I’ll probably push the P360 Ultra forward first. The others will vary (I use the X1 Carbon as a road PC, so I’m not inclined to push that one forward ahead of its time).

Stay tuned! I’ll keep you posted as things develop. It’s all fun, all the time, here in Windows World.

Note Added 1 Hour Later

I just force-upgraded the Lenovo Yoga 7i to 22H2 (11th gen i5-1135G7, 12GB RAM, 500 GB Samsung OEM NVMe SSD). Despite downloading via Wi-Fi, the whole process using the Windows 11 Update Assistant took under 18 minutes to complete. I see no errors in DevMgr either. So far, so good…

Note Added End of Day (?5? hours later)

I have now also force-upgraded the P360 Ultra and the Ryzen 5800X builds. Because the Nvidia driver was auto-updated during the upgrade (and I already know that’s a non-starter) I had to switch over to the built-in Intel UHD 770. I’ll have to roll back the Nvidia driver again to get the discrete GPU working. Again, I used the Upgrade Assistant.

For the 5800X I downloaded an ISO file, mounted it, then ran setup.exe from the root of that virtual drive. Took a bit longer to download, but was also a pretty quick install. So that’s 3 PCs upgraded today without too much drama or drivel.

Facebooklinkedin
Facebooklinkedin

Thinking About Windows 10/11 SSDs

I’m still busy benchmarking away on the two Thunderbolt4/USB4 PCs that Lenovo has recently sent my way. But as I’ve been doing so, I’ve been thinking about Windows 10/11 SSDs in general. On that path, I’ve realized certain principles that I’d like to share with you, dear readers.

I’m spurred in part to these statements from a sponsored (and pretty contrived) story from MSPowerUser entitled “Is NVMe a Good Choice for Gamers?” My instant response, without reading the story — which actually focuses on storage media beyond the boot/system drive — was “Yes, as much as you can afford.” Spoiler alert: that’s what the story says, too.

Where Thinking About Windows 10/11 SSDs Leads….

Here are some storage media principles that flow from making the most of a new PC investment.

  1. The more you spend on a PC, the more worthwhile it is to also spend more on NVMe storage.
  2. Right now, PCIe Gen4 drives run about 2X the speed of PCIe Gen3 drives. They don’t cost quite twice as much. Simple economics says: buy the fastest NVMe technology your PC will support.
  3. Buy as much NVMe storage as you can afford (or force yourself to spend). For pre-built PCs and laptops, you may want to buy NVMe on the aftermarket, rather than get the drives pre-installed. Markup on NVMe drives can be painful. Hint: I use Tom’s Hardware to keep up with price/performance info on NVMe SSDs and other PC components (it’s also the source for the lead-in graphic for this story, which still prominently displays the now-passe Intel Optane as an SSD option. Caveat emptor!).
  4. Corollary to the preceding point: fill every M.2 slot you can in your build. For both my recent Lenovo loaners — the P360 Ultra and the P16 Mobile Workstation — that means populating both slots with up to 4TB each. Right now, the Kingston KC3000 looks like a 4TB best buy of sorts.

Thinking Further (and Outside the Box)

More thoughts in this vein, with an eye toward external drives and multi-tiered storage (archives and extra backups):

  1. If you’re going to put an NVMe SSD in an external enclosure, you will be OK for the time being in a USB 3.2 rather than a USB 4 enclosure. Right now, the newer enclosures cost more than twice as much but don’t deliver anywhere near 2x the speed (except on synthetic benchmarks — I used C: imaging times as a more reliable indicator). Over time this will no doubt change, and I’ll keep an eye on that, too.
  2. I don’t consider spinners (conventional mechanical hard disk drives, or HDDs) any more, except for archival and inactive storage. If I need something for work or play, it goes on an SSD. If I might need something, someday (or to restore same) then it’s ok on an HDD.

I used to restrain spending on NVMe SSDs because of its high price differential. I’m now inclined to believe that restraint is a false economy and forces less productivity as a result. That’s why I’m rethinking my philosophy. I haven’t quite yet gotten to Les Blanc’s famous dictum (“Spend It All”) but I am coming around to “Spend As Much as You Can”…

Remember This Fundamental Assumption, Tho…

My reasoning aims at high-end PCs where users run data-, graphics-, and/or compute-intensive workloads. It does not apply, therefore, to home, hobbyist, and low-end office users. For them typical productivity apps  (e.g. MS Office or equivalent), email, web browsing and so forth predominate. They wouldn’t need, nor benefit much from, buying lots of fast NVMe storage. That said, a 1 TB fast-as-possible NVMe for the boot/system drive is the baseline. Other storage options will balance themselves against budget to dictate other choices and PC builds for such users.

In different terms, if you’re not maxing out your PC running data analytics, 3D models and other high-end graphics rendering, or AI or machine learning stuff, this advice is most likely overkill. Too, too costly. But for this user community, more spent on NVMe (and GPUs and memory as well) will repay itself with increased productivity. ‘Nuff said.

Facebooklinkedin
Facebooklinkedin

Lenovo P16 Gen1 Gets Unboxed

Just over a month ago, I reached out to my contacts at Lenovo. I’d been wanting to lay hands on some newer PCs so I could dig into Thunderbolt 4 and USB 4 to understand its workings. A couple of weeks ago, I received a P360 Ultra SFF PC equipped with 2 each TB4/USB4 ports. Last Friday, unannounced and unexpected, another so-endowed laptop arrived at my door. Here, I’ll report on my initial findings as this Lenovo P16 Gen1 gets unboxed and set up. It’s a doozy!

Details: Lenovo P16 Gen1 Gets Unboxed

I’ll provide a recitation of facts and figures for this powerful portable workstation PC. In fact, it’s the most expensive personal computer I’ve ever worked on. Indeed, its website price, as configured, is a staggering US$9,719! It’s a big heavy sucker, too: 30.23mm x 364mm x 266mm / 1.2″ x 14.3″ x 10.5″, and 6.6 lbs/3.0 kg.

Here’s a selective list of what’s inside this beast of a Widows 11 Pro laptop. (Find all details on its product page under “Tech Specs”):

CPU: i9-12950HX (16 cores, 24 threads)
RAM: 128 GB (4 x 32GB  4800 MHz DDR5)
GPU (built-in): Intel UHD 770
GPU (discrete): Nvidia RTX A5500 (16 GB VRAM)
Display: 16.0″ WQUXGA (3840×2400) OLED touchscreen
SSD: 2 TB Kioxia KXG7APNV2T04 (PCIe 4.0 Gen4 NVMe)
Biometrics: Fingerprint reader and Hello IR Camera

As cool and impressive as all this stuff is — and it is all that for sure — the real reason I’m using this monster appears in the next image, enumerating the unit’s various ports:

My real reason for using this laptop is item 10, boxed in red.
[Click image for full-sized view.]

I’m jazzed, of course, by the panoply of features and stuff on this giant luggable PC. But I’m most interested in working with its two rear USB-C ports, both of which support Thunderbolt4 and USB4. And indeed, I’ve confirmed that both work as claimed. That’s not always the easiest or most obvious thing, as I’ll explain next.

Getting to TB4/USB4

As I’m learning, it takes some diligence to get either or both of these fast bus technologies to work. The PC port has to support these technologies, as does the target device, and the cable between the two. This is not always the easiest thing in the word to ensure or arrange. But as the following screenshot shows, I’ve gotten both working on the ThinkPad P16 Gen1 Mobile Workstation:

Intel TB Control Center: Above, the CalDigit TS4 dock; Below: an NVMe drive inside the Konyead USB4 enclosure.
[Click image for full-sized view.]

Both TB4 and USB4 remain cutting edge connection types. Everything about them is expensive right now. The CalDigit TS4 dock goes for over US$350 when you can find one for sale. The Konyead M.2 USB4 enclosure costs US$130, which is about what I paid for the Sabrent 1TB Rocket 4 Plus I put inside.

And then, one MUST use TB4/USB4 cables which aren’t cheap either (I got mine with the CalDigit) but they routinely go for US$20-40 for 1 M. Cables are not always well-labeled. It’s a good idea to go for those explicitly specced out for 40Gpbs data and marked as such. I’ve had lots of interesting issues from using lower-spec cables. Mostly, USB4/TB4 simply doesn’t work as promised and the device drops to UASP/USB 3.1/2 levels of performance.

Tomorrow, I’ll follow up and explain what all that means… Stay tuned!

Facebooklinkedin
Facebooklinkedin

Old School Driver Repair Still Works

Whoa! I’ve had the Lenovo P360 Ultra SFF PC for a week now, and I FINALLY got the discrete Nvidia RTX A2000 GPU working. It showed only a black screen with the Acer XR382CQK monitor. With a Dell 2717 from my wife’s PC as a stand-in, it would run (briefly) then fall over (AppCrash on NvidiaContainer.exe). My suspicion of driver issues were confirmed by the ace Lenovo engineering team. And I was happy to learn that an old school driver repair still works.

What Old School Driver Repair Still Works?

Good question! Having just written a story for TechTarget about fixing black screens, this was chapter and verse for me. If the current GPU driver falls over, received wisdom goes “roll back a version. Keep going till it works…” I’m actually not sure how far that would have gotten me.

But what the Lenovo engineering folks told me falls in line with that approach. They simply said “install version 511.65” and furnished me with a Lenovo download link for same.

Long story short: I installed the older driver. When I rebooted the machine, the previously non-functional XR382CQK monitor worked like a champ in the miniDP port. I didn’t even have to lug my wife’s Dell 2717 into position instead.

A Further Bulletin from Engineering…

Here’s what one of the engineering team emailed to the group assembled to help me over this hump:

 I checked with our lab and there is a known recent issue with Nvidia’s latest driver 513.12 and later. There will be a P360 Ultra BIOS release by end of month to address the issue. However, the workaround in the meantime is to use driver 511.65.  The symptoms are similar to what Ed is seeing – driver crashes.

Given that insight, a quick confirmation that I was running 516.94, and a link to the download for that older driver version, I got straight to work. Problem solved! Nice to know the old school repair still works. Even nicer to get pointed at the last known working version by the Lenovo team.

Facebooklinkedin
Facebooklinkedin

Accidental Pause Kills In-Process Updates

I just learned something I didn’t really want to know. I “oopsed” my way into pausing updates on a Dev Channel test PC this morning. As I did so, the download for Build 25201 was underway, as was the install for KB5017257 (CU for .NET 3.5 and 4.8.1). Alas, this accidental pause kills in-process updates. Thus, I had to restart to apply all the other stuff that had finished, then un-pause updates. Next, I had to redownload Build 25201. Both installed correctly, and another reboot finished the job.

Living with Accidental Pause Kills In-Process Updates

Oh well. If that’s the worst thing that happens to me today, it will still be a good day. What I didn’t know was that in-process items would come to a screeching halt. That’s because I’d never accidentally clicked “Pause for 1 week” during the update process before. Sigh.

Hopefully, alert readers can profit from my mistake without having to learn the hard way for themselves. Tip: stay away from the “Pause…” button while updates are in process. That’s the best way I can think of to skip the whole learning experience entirely.

Compounding the Mistake…

Because I hadn’t yet applied last week’s Patch Tuesday updates to the affected machine, as well as pending Dev Channel build 25201, this was a pretty big update cycle for that machine. I count 1 driver update, 2 Definition updates, and 3 “Other” updates among that number, as well as the items already recited.

But alas, that’s the way things sometimes go in Windows World. Fumble fingers got me pretty good this time. Hopefully, we’ll all be exempt from this particular gotcha going forward. Sigh.

Facebooklinkedin
Facebooklinkedin

Backblaze Data Confirms SSD Trumps HDD Reliability

It’s always made sense on an intuitive basis. Hard Disk Drives (HDDs) include spinning platters, moving arms with read/write heads, motors to power things, and gears to control action. SDDs are made entirely of circuitry: no moving parts. Thus, it’s compelling to assert that SDDs should be more reliable, and less prone to failure than HDDS. And indeed, the latest 2022 Drive State report from online backup and storage provider Backblaze weighs in on this topic. As I read it, that Backblaze data confirms SSD trumps HDD reliability.

The lead-in graphic shows 4 years’ worth of SSD data vs. 8 years for HDDs for boot drivers in their thousands of datacenter based servers. Whereas there’s a dramatic upward knee in the curve for HDDS between years 4 and 5 (from 1.83% to 3.55%), failures actually dipped for SDDs during that interval (from 1.05% to 0.95%). Interesting!

How Backblaze Data Confirms SSD Trumps HDD Reliability

The afore-linked report explains that boot drives function in multiple roles on the company’s plethora of storage servers. They store log and temprorary files; they maintain storage holdings based on each day’s storage activities and volume. The disparity in the number of years for which data is available comes from later adoption of SDDs as boot drives at BackBlaze. That practice started in Q4 2018. Today, all new servers boot from SSDs; older servers whose HDD boot drives fail get SSD replacements.

The numbers of SSDs keep going up, too. The end-of-year 2021 SSD report encompassed 2,200 SSDs. By June 30, 2022, that count grew to 2,558. Failure rates for such devices show much lower numbers than for HDD (see the tables labeled Backblaze SSD Quarterly Failure Rates in the latest report for more detail). Models included come from the following vendors: Crucial, Dell, Micron, Seagate and WDC.

Note: the report itself says:

For any given drive model in this cohort of SSDs, we like to see at least 100 drives and 10,000 drive-days in a given quarter as a minimum before we begin to consider the calculated AFR to be “reasonable”.

The real news, of course, is that quarterly, annualized and lifetime failure rates for SSDs are significantly lower than for HDDs, based on Backblaze’s own long-running data collection. Thus their conclusion comes with the weight of evidence “…we can reasonably claim that SSDs are more reliable than HDDs, at least when used as boot drives in our environment.”

Good stuff! As for me, I like SSDs not just because they’re less prone to failure. They’re also FAST, if more expensive per storage unit than spinners.

 

 

Facebooklinkedin
Facebooklinkedin